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I Introduction

Motivation
Study SDEs of the form

dx
dt

= f (x) + g(x)η(t)

Want to know moments (e.g. 〈x(t)〉, 〈x(t)x(t ′)〉) and probability density
function (pdf, p(x , t))
Can use Langevin and Fokker-Planck equations to study, but perturbation
methods can be difficult to apply
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I Introduction

Outline
2 Introduce moment generating functionals (Z [λ]), distribution of functions

(P[x(t)])
3 Path integrals to compute moment generating functional of SDE, using

Ornstein-Uhlenbeck process as example
4 Perturbation methods using Feynman diagrams
5 Derive equations for the density p(x , t)
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II Moment generating functionals

Moment generating function
For a single random variable X , the moments (〈X 〉 =

∫
xnP(x) dx) are

obtained from the MGF

Z (λ) = 〈eλx〉 =

∫
eλxP(x) dx

by taking derivatives

〈X n〉 =
1

Z (0)

dn

dλn Z (λ)

∣∣∣∣
λ=0

MGF contains all information about RV X , alternative to studying the pdf
directly.
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II Moment generating functionals

Cumulant generating function
Define W (λ) = log Z (λ), then

〈X n〉C =
dn

dλn W (λ)|λ=0

are the cumulants of RV X
As with MGF, contains all information about X , and is sometimes more
convenient. For example

〈X 〉C = 〈X 〉
〈X 2〉C = 〈X 2〉 − 〈X 〉2 = var(x) = 2nd central moment

〈X 3〉C = 〈X 3〉 − 3〈X 2〉〈X 〉+ 2〈X 〉3 = 3rd central moment
...

Higher order cumulants are neither moments or central moments
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II Moment generating functionals

Moment generating function(al)
For an n-dimensional random variable x = (x1, . . . , xn), the generating
functional is

Z (λ) = 〈eλ·x〉 =

∫ n∏
i=1

dxieλ·xP(x)

for λ = (λ1, . . . , λn).
k th order moments are obtained via〈

k∏
i=1

x(i)

〉
=

1
Z (0)

k∏
i=1

∂n

∂λ(i)
Z (λ)

∣∣∣∣∣
λ=0

As before, the cumulant generating function is W (λ) = log Z (λ)
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II Moment generating functionals

Moment generating functional
Identify with each xi in x a time, t = ih, such that xi = x(ih) and let total
time T = nh, splitting interval [0,T ] into n segments of length h
Take limit n→∞ (with h = T/n) such that xi → x(ih) = x(t), λi → λ(t)
and P(x)→ P[x(t)] = exp(−S[x(t)]) for some functional S[x ], called the
action

Instead of summing over all points in Rn

(∫ n∏
i=1

dxi

)
, sum over all

curves
(∫
Dx(t)

)
, giving the MGF:

Z [λ] =

∫
Dx(t) e−S[x ]+

∫
λ(t)x(t) dt
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II Moment generating functionals

Moment generating functional
Note: inner product becomes x · y→

∫
x(t)y(t) dt

Moments can be obtained via〈
k∏

i=1

x(t(i))

〉
=

1
Z [0]

k∏
i=1

δ

δλ(t(i))
Z [λ]

∣∣∣∣∣
λ(t)=0

Cumulant generating functional again

W [λ] = log(Z [λ])
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II Moment generating functionals

The functional derivative δF [ϕ]
δϕ

Extension of directional derivative for functions f : Rn → R:

∇v f (x) = ∇f · v = lim
ε→0

f (x + εv)

ε

gives rate of change in direction vector v at point x.
Can compute using a test function f (x)〈

δF
δϕ
, f (x)

〉
=

d
dε

F [ϕ+ εf ]

∣∣∣∣
ε=0

Example:

W [λ] =

∫
1
2
λ2(t) dt ;

δW
δλ

= λ(t)

F [ϕ] = e
∫
ϕ(x)g(x) dx ;

δF
δϕ

= g(x)e
∫
ϕ(x)g(x) dx
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II Moment generating functionals

Gaussian RVs in one dimension
RV X ∼ N(a, σ2) has MGF

Z (λ) =

∫ ∞
−∞

exp
[
−(x − a)2

2σ2 + λx
]

dx =
√

2πσ exp(λa + λ2σ2/2),

obtained by completing the square.
And has cumulant GF

W (λ) = λa +
1
2
λ2σ2 + log(Z (0))

so cumulants are 〈x〉C = a, 〈x2〉C = var X = σ2 and 〈xk 〉C = 0 for all
k > 2.
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II Moment generating functionals

Gaussian RVs in n dimensions
The n dimensional RV X ∼ N(0,K ), with covariance matrix K , has MGF

Z (λ) =

∫ ∞
−∞

e−
1
2
∑

jk xj K
−1
jk xk +

∑
j λj xj dx

Since K is symmetric positive definite (then so is K−1) we can
diagonalise in orthonormal coordinates, giving

Z (λ) = [2π det(K )]n/2e
1
2
∑

jk λj Kjkλk

Infinite dimensional
MGF is

Z [λ] =

∫
Dx(t)e−

1
2

∫
x(s)K−1(s,t)x(t)dsdt+

∫
λ(t)x(t)dt = Z [0]e

1
2

∫
λ(s)K (s,t)λ(t)dsdt
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II Moment generating functionals

Gaussian RVs and Wick’s theorem
Relate higher order central moments of multivariate normally distributed x
to products of second order central moments〈

k∏
i=1

x(i)

〉
=

{
0, k odd∑
σ∈A Kσ(1)σ(2)Kσ(3)σ(4) · · ·Kσ(k−1)σ(k), k even

for A = {all pairings of x(i)}. For k = 2l sum will contain
(2l − 1)!/[2l−1(l − 1)!] terms.
Example: for k = 4

〈x1x2x3x4〉 = K12K34 + K13K24 + K14K23
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II Moment generating functionals

Quantum mechanics
Sum over paths x(t): K (a,b) =

∫
Dx(t)e2πiS[x ]/h where |K (a,b)|2 gives the

probability particle with action S =
∫ tb

ta
L(x(t), ẋ(t), t) dt travels from point a to

b.

Quantum field theory
Sum over fields ϕ(x, t):

S[ϕ] =

∫
ϕ(t)K−1(t, t′)ϕ(t)dd tdd t ′ + g

∫
ϕ4(t)dd t

Statistical mechanics
The sum over all states Z =

∑
q e−βS[q] is called the partition function. Z [J] is

the partition function of QFT
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II Moment generating functionals

Quantum mechanics
When S is large compared with h/2π the integral

∫
Dx(t)e2πiS[x ]/h is a rapidly

oscillating exponential – method of stationary phase says only curves for

which
δS
δx

= 0 contribute⇒ principle of least action in classical mechanics

Quantum field theory
For the case where we can describe state of system in terms of
mechanical variables (e.g. atoms in a periodic latte, crystal), each point is
described by a quantum harmonic oscillator. If sensible to take a
continuum approximation→ quantum field theory. Higher modes, excited
states, in the coupled oscillators have particle like behaviour.
In other cases, each point in space is described other variables, e.g.
electromagnetism, but may still be quantised as oscillators. Excited
states of these fields are called bosons, such as the photon.
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III Application to SDEs

Repeat for an SDE
Construct generating functional for SDEs of the form

dx
dt

= f (x , t) + g(x)η(t) + yδ(t − t0),

for t ∈ [0,T ].
Discretize in time steps h (Ito interpretation)

xi+1 − xi = fi (xi )h + gi (xi )wi
√

h + yδi,0

Each wi is Guassian with 〈wi〉 = 0 and 〈wiwj〉 = δij
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III Application to SDEs

Probability generating functional
PDF given the random walk wi :

P[x |w ; y ] =
n∏

i=0

δ[xi+1 − xi + fi (xi )h − gi (xi )wi
√

h − yδi,0]

Take Fourier transform

P[x |w ; y ] =

∫ N∏
j=0

dkj

2π
e−i

∑
j kj (xj+1−xj−fj (xj )h−gj (xj )wj

√
h−yδj,0)

Using the law of total probability and completing the square:

P[x |y ] =

∫ N∏
j=0

dkj

2π
e−

∑
j (ikj )

( xj+1−xj
h −fj (xj )−yδj,0/h

)
h+
∑

j
1
2 g2

j (xj )(ikj )
2h
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III Application to SDEs

Continuum limit

Again let h→ 0 with N = T/h, replace iki with x̃(t) and
xj+1 − xj

h
with

ẋ(t):

P[x(t)|y , t0] =

∫
Dx̃(t)e−

∫
[x̃(t)(ẋ(t)−f (x(t),t)−yδ(t−t0))− 1

2 x̃2g2(x(t),t)]dt

x̃(t) represents wave number k , proportional to momentum p, thus can
write down a moment generating functional for position and
momumentum space:

Z [J, J̃] =

∫
Dx(t)Dẋ(t)e−S[x,x̃ ]+

∫
J̃x dt+

∫
Jx̃ dt

Typo in set of equations below (6)?
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III Application to SDEs

More generally...
Instead of g(x)η(t), with η(t) white noise, an SDE having noise process
with cumulant W [λ(t)] will have PDF:

P[x(t)|y , t0] =

∫
Dη(t)δ[ẋ(t)− f (x , t)− η(t)− yδ(t − t0)]e−S[η(t)]

=

∫
Dη(t)Dx̃(t)e0

∫
x̃(t)(ẋ(t)−f (x,t)−yδ(t−to)) dt+W [x̃(t)]

If η(t) is delta correlated (〈η(t)η(t ′)〉 = δ(t − t ′)) then W [x̃(t)] can be
Taylor expanded in both x(t) and x̃(t):

W [x̃(t)] =
∞∑

n=1,m=0

vnm

n!

∫
x̃n(t)xm(t) dt

– summation over n starts at one because W [0] = log(Z [0]) = 0?
– delta correlated means no mixed derivative terms in finite dimensional
equivalent?
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A. Ornstein-Uhlenbeck Process

For example...
The OU process has the action

S[x , x̃ ] =

∫ [
x̃(t)(ẋ(t) + ax(t)− yδ(t − t0))− D

2
x̃2(t)

]
dt

G and OU’s moments could found immedately, since action is quadratic,
demonstrate perturbation method to motivate the method more generally
Break action into ‘free’ and ‘interacting’ terms. Free terms would
represent a particle without any interaction with a field or potential, and
would have a quadratic action
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A. Ornstein-Uhlenbeck Process

Green’s functions
G, the linear response function, or propagator, is a Green’s function:(

d
dt

+ a
)

G(t , t ′) = δ(t − t ′)

G(t , t ′) is equivalent to K (t , t ′) from the generic Gaussian stochastic
process in Section II (equation 2), also called the correlator, and in QM
would represent probability a particle travelling from one point to another
The free generating functional is

ZF [J, J̃] =

∫
Dx(t)Dx̃(t)e−

∫
dtdt′x̃(t)G−1(t,t′)x(t) dt+

∫
x̃(t)J(t) dt+

∫
x(t)J̃(t) dt

so, from (2):
ZF [J, J̃] = e

∫
J̃G(t,t′)J dtdt′
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A. Ornstein-Uhlenbeck Process

Green’s functions
Solve for G:

G(t , t ′) = H(t − t ′)e−a(t−t0)

The free moments are〈∏
ij

x(ti )x̃(tj )

〉
F

=
∏

ij

δ

δJ̃(ti )
δ

δJ(tj )
e
∫

J̃(t)G(t,t′)J(t′) dtdt′

∣∣∣∣∣∣
J=J̃=0

Note:

〈x(t1)x̃(t2)〉F =
δ

δJ̃(t1)

δ

δJ(t2)
e
∫

J̃(t)G(t,t′)J(t′) dtdt′
∣∣∣∣∣
J=J̃=0

= G(t1, t2)

and 〈x̃(t1)x̃(t2)〉F = 〈x(t1)x(t2)〉F = 0, so Wick’s theorem means all higher
order free moments must have equal numbers of x ’s as x̃ ’s.
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A. Ornstein-Uhlenbeck Process

Perturbed generating functional
Equation (7) can also be written

Z [J, J̃] = ZF [0,0] +
∞∑

m=1

1
m!
〈µm〉F

so we can now evaluate Z [J, J̃] in terms of the free moments.
(9) and the equation below take some work
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A. Ornstein-Uhlenbeck Process

Results
Once the MGF is determined so is the cumulant generating functional

W [J, j̃] = y
∫

J̃(t)G(t , t0) dt1+

∫
J̃(t ′)J(t ′′)G(t ′, t ′′) dt ′dt ′′+

D
2

∫
J̃(t ′)J̃(t ′′)G(t ′, t)G(t ′′, t) dtdt ′dt ′′

The moments/cumulants can be read immediately from W [J, J̃] in terms
of the propagator
Knowing G(t , t ′) allows the moments to be computed explicitly
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IV Perturbation methods and Feynman Diagrams

The MGF expanded about the free action
As in the OU process, split action into linear and non-linear parts
S = SF + SI :

Z [J, J̃] =

∫
Dx(t)Dx̃(t)e−SF−SI +

∫
J̃x+

∫
Jx̃

=
∞∑

n=0

1
n!
〈µn〉F

with µ = SI +
∫

J̃x dt +
∫

Jx̃ dt
Expand SI :

SI =
∑

n≥2,m≥0

Vmn =
∑

n≥2,m≥0

∫
xmx̃n dt

Remember to distinguish between free moments given by ZF (to which
Wick’s theorem applies) and those given by Z (to which Wick’s theorem
does not apply).
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IV Perturbation methods and Feynman Diagrams

And a diagrammatic equivalent
With each Vmn in SI associate an internal vertex having m entering edges
and n exiting edges; these elements are connected with one another in
all possible ways (multinomial theorem) in the expansion above∫

Jx̃ and
∫

J̃x terms contribute respectively entering and exiting external
vertices
Edges connecting vertices correspond to a pairing between an x(t) and
x̃(t)
e.g. the OU process...

SI =

∫
dt yδ(t − t0)x̃(t) +

∫
dt

D
2

x̃2(t)
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IV Perturbation methods and Feynman Diagrams

Wick’s theorem
All possible ways: only free moments with equal numbers of x and x̃ ’s are

non-zero – those of the form 〈
k∏

i=1

x(ti )x̃(t ′i )〉F

For example, the coupling between external vertex
∫

J̃x dt and internal
vertex

∫
δ(t − t0)yx̃(t) dt in Z contributes:

Z =

〈∫
dtdt ′ J̃(t)x(t)yδ(t ′ − t0)x̃(t ′)

〉
F

+ all other terms

=

∫
dtdt ′ J̃(t)yδ(t ′ − t0) 〈x(t)x̃(t ′)〉F + all other terms

=

∫
dt yJ̃(t)G(t , t0) + all other terms

Vertices in diagram are assigned temporal index tk
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IV Perturbation methods and Feynman Diagrams

Computing moments with Feynman diagrams
Recall 〈

N∏
i=1

M∏
j=1

x(ti )x̃(tj )

〉
=

1
Z [0,0]

δ

δJ(ti )
δ

δJ̃(tj )
Z

∣∣∣∣∣
J=J̃=0

⇒ only terms/diagrams in expansion for Z having N entering and M
exiting external vertices will contribute to that moment
⇒ moments can be computed by writing down all possible diagrams with
requiste number of external vertices
In OU only a finite number of diagrams need be considered and the exact
mean and covariance can be determined immediately
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IV Perturbation methods and Feynman Diagrams

Computing moments with Feynman diagrams

For the process ẋ = −ax + bx2 + yδ(t − t0) +
√

Dxn/2η(t):

SI = −yx̃(t0)− b
∫

dt x̃(t)x2(t)−
∫

x̃2xn D
2

the components and example diagrams are Figures 1 and 2
The mean and covariance are

〈x(t)〉 =yG(t , t0) + bD
∫

G(t , t1)G(t1, t2)2 dt1dt2

+ by2
∫

G(t , t1)G(t1, t0)2 dt1 + . . .

〈x(s)x(t)〉 =D
∫

G(s, t1)G(t , t1) dt1 + y2G(s, t0)G(t , t0)

+ 2bDy
∫

G(s, t1)G(t , t2)G(t1, t2)G(t1, t0) dt1dt2 + . . .
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IV Perturbation methods and Feynman Diagrams

Which terms contribute the most?
If some terms in SI (vmn

∫
xnx̃m,m ≥ 2) are small, let each such vertex

contribute a small parameter α
Perform expansion in orders of α – ‘weak coupling expansion’
e.g. in QED coupling is related to change of electron (e):

α ≈ 1/137 = fine structure constant
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IV Perturbation methods and Feynman Diagrams

Small noise expansion
Scale entire exponent in MGF by some factor h

Z =

∫
Dx(t)Dx̃(t)e−

1
h (S−

∫
J̃x−

∫
Jx̃)

Each vertex of SI gains a factor of 1/h and each edge of SF gains a
factor h⇒ can expand in powers of h
Can show hE−I+1 = hE−L+1 ⇒ expand in number of loops in diagrams
Deterministic equation has no loops – all diagrams are trees: ‘classical
edges’
⇒ construct moments with same vertices and diagrams as in Figure 1
and 2 but replace edges with classical ones
⇒ a ‘semi-classical’ expansion
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V Connection to Fokker-Planck Equation

Computing density p(x , t)
Let U(x1, t1|x0, t0) be the transition probability, then

U(x1, t1|x0, t0) =

∫
Dx(t)δ(x(t1)− x1)P[x(t)]

=
1

2πi

∫
dλ
∫
Dx(t)e−λ(x(t1)−x1)P[x(t)]

=
1

2πi

∫
dλ
∫
Dx(t)e−λ(x1−x0)eλ(x(t1)−x0)P[x(t)]

=
1

2πi

∫
dλ
∫
Dx(t)e−λ(x1−x0)ZCM(λ)

ZCM gives moments of x(t1)− x0 given x(t0) = x0

Initial condition is incorporated in P[x(t)] as done previously – means
P[x(t)] may be given by a path integral over x̃(t).
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V Connection to Fokker-Planck Equation

Computing density p(x , t)
Using:

ZCM(λ) = 1 +
∞∑

n=1

1
n!
〈(x(t1)− x0)n〉x(t0)=x0

1
2πi

∫
dλe−λ(x1−x0)λn =

(
− ∂

∂x1

)n

δ(x1 − x0)

U becomes

U(x1, t1|x0, t0) =

(
1 +

∞∑
n=1

1
n!

(
− ∂

∂x1

)n

〈(x(t1)− x0)n〉x(t0)=x0

)
δ(x1 − x0)
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V Connection to Fokker-Planck Equation

Computing density p(x , t)
Can derive a relation for p(x , t):

p(y , t + ∆t) =

∫
U(x , t + ∆t |y ′, t)p(y ′, t) dy ′

=

∫ (
1 +

∞∑
n=1

1
n!

(
− ∂

∂y

)n

〈(x(t1)− y ′)n〉x(t)=y ′

)
δ(y − y ′)p(y ′, t) dy ′

=

(
1 +

∞∑
n=1

1
n!

(
− ∂

∂y

)n

〈(x(t1)− y)n〉x(t)=y

)
p(y , t)
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V Connection to Fokker-Planck Equation

Computing density p(x , t)
Can derive a PDE for p(x , t):

∂p(y , t)
∂t

∆t =
∞∑

n=1

1
n!

(
− ∂

∂y

)n

〈(x(t1)− y)n〉x(t)=y p(y , t) + O(∆t2)

⇒ ∂p(y , t)
∂t

=
∞∑

n=1

1
n!

(
− ∂

∂y

)n

Dn(y , t)p(y , t)

as ∆t → 0. The Kramers-Moyal expansion
Dn are

Dn(y , t) = lim
∆t→0

〈(x(t + ∆t)− y)n〉
∆t

∣∣∣∣
x(t)=y

Dn are computed from the SDE
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V Connection to Fokker-Planck Equation

Computing density p(x , t)
Example: for the Ito process

dx = f (x , t)dt + g(x , t)dBt

we can compute D1(y , t) = f (y , t) and D2(y , t) = g(y , t)2, Dn = 0 for
n > 2.
Hence the PDE becomes a Fokker-Planck equation

∂p(y , t)
∂t

=

(
∂

∂y
D1(y , t) +

1
2
∂2

∂y2 D2(y , t)
)

p(y , t)
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V Connection to Fokker-Planck Equation

Computing density p(x , t)
Compute p(x , t) = U(x , t |0,0) as

p(x , t) =
1

2πi

∫
dλe−λxZCM(λ)

=
1

2πi

∫
dλe−λx exp

[∑
n=1

1
n!
λn〈x(t)n〉C

]

For OU we know the cumulants hence

p(x , t) =

√
a

πD(1− e−2a(t−t0))
exp

(
−a(x − ye−a(t−t0))2

D(1− e−2a(t−t0))

)
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VI Conclusion

One extra reference
1 R. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals. Dover,

emended edition, 2005.
Provides physical context. Final chapter discusses similar material to this
paper
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