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1  Introduction  

Computational gene prediction is an important tool in the annotation of a sequenced genome. Typical ab 
initio predictors aim to identify the precise location and structure of genes, based on DNA sequence features such 
as codon biases, presence of start/stop codons, etc. Further improvements can be made if external evidence 
sources are included. To date, such external evidence has included ESTs and homologous proteins. Tiling 
expression arrays, which probe the non-repeat portion of the genome in an unbiased fashion, could also be used 
for this task, but little work has been done in this area to date. More typically, tiling arrays are analyzed by 
transcript mapping or ‘transfragging’, in which transcribed regions of the genome (exons and non-coding RNA 
genes) are identified.  

Here we present preliminary results from a new tool, TileGene, which uses a generalized hidden 
Markov model (GHMM) framework to combine evidence from genomic sequence and tiling array experiments in 
order to improve gene prediction, or alternatively to improve transcript mapping. In addition to predicting genes, 
TileGene also predicts non-coding transcribed elements, thereby providing a richer annotation of a genome. 
 
2  Method and Results  

TileGene is a GHMM, similar in design and implementation to GenScan [1]. Fourth order Markov 
chains are used to model sequence and second order weight array matrix models are used to model signals. Signal 
models for start/stop codons and acceptor/donor splice sites are included. Maximum likelihood estimates of model 
parameters were taken from a set of known Drosophila genes. Underlying states of the model correspond to 
features to be inferred from input DNA sequence. Typically CDS, UTR, introns and intergenic regions are 
represented. In order to predict non-coding transcribed elements we also include novel states for regions showing 
evidence of expression but little protein-coding capability. The architecture is such that these non-coding regions 
can occur within intergenic and intronic regions. The addition of these states requires a number of assumptions: in 
the current model, we assume that these states show similar expression levels to protein-coding genes, have 
similar lengths to exons and show no strong nucleotide composition biases.  

In order to incorporate tiling expression data into our model we use a probe-level summary statistic 
based on correlations. In transcribed regions, it is expected that intensities across different time points for 
neighbouring probes will be highly correlated, while in non-transcribed regions it is expected that intensity 
profiles will have lower, though typically still positive correlations. Empirical distributions of the score are 
measured within known expressed and non-expressed regions. This is incorporated into our model by using a 
dual-emission hidden Markov model. This allows for both the sequence-based models and the tiling correlation 
model to influence predictions. A weight may be assigned to each emission that can be discriminatively trained to 
maximize performance. The inclusion of data from different time points provides evidence for a larger range of 
transcribed elements thereby aiding in the prediction of a larger number of genes. 

Table 1 shows preliminary performance data on the Adh region of Drosophila melanogaster for three 
versions of TileGene in order to demonstrate the improvement tiling expression provides. The models are 
compared to the transcript mapping method of [2] and the gene predictor Augustus [3]. Tiling array data was 
taken from [2], which maps transcription during Drosophila embryogenesis. Sensitivities marked with an asterisk 



are based on a curated set of known, expressed genes. TileGene+expression represents gene prediction with novel 
states and correlation score included; TileGene+expression+weighted indicates a discriminately trained weight 
has been used when including the tiling correlation score. Annotations include alternate transcripts, which lowers 
sensitivity and increases specificity at the nucleotide and exon levels. 

 
Table 1: TileGene performance. 

Nucleotide level Exon level Gene level  
Sn Sp Sn Sp Sn Sp 

Transfrag [4] 82* 45 - - - - 
Augustus 72 97 54 78 56 61 

TileGene (ab initio) 77 93 51 65 35 40 
TileGene+expression 65* 94 15* 32 10* 25 

TileGene+expression+weighted 90* 94 57* 64 38* 40 

 
3  Discussion 

Without expression data, the performance of TileGene is comparable to older GHMM gene predictors 
(data not shown), but it does not perform as well as more advanced models such as Augustus. This is not 
surprising given the relative simplicity of the gene model implemented in TileGene.  

The addition of an expression content sensor trained using a set of known, expressed genes improves the 
performance of TileGene at both the nucleotide and exon level based on an expressed gene test set. 
TileGene+expession+weighted outperforms the transfrag method, partly as a result of the model operating not at 
the probe-level but the nucleotide-level. The transfrag method predicts transcribed elements, not exclusively genes, 
resulting in the apparently poor specificity. The results show that TileGene is successful at identifying transcribed 
elements and classifying them as protein-coding or otherwise. 

Weighting the contributions from the two content sensors improves sensitivity at all measured levels. As 
analysed, the expression data provide information about the location of exons but no information about the 
structure of the genes in which they reside, resulting in a smaller increase in sensitivity measured at the gene level 
than the nucleotide or exon level. Specificity remains largely unchanged, which reflects that the model is only 
predicting expressed genes.  

GHMM gene predictors are effective at combining subtle hints of gene location but care needs to be 
taken when incorporating external evidence sources to ensure the GHMM does not ‘misinterpret’ the data and 
disturb the delicate balance of probabilistic models. Indeed, when expression is included without being weighted 
the performance is shown to decrease. 

The results we present above are preliminary – optimal training and implementation of the model has 
yet to be determined. We hope to further investigate modeling of expressed non-coding states and the implications 
on gene prediction accuracy. Nonetheless, it does appear that the performance of a relatively simple gene 
predictor can be improved by the inclusion of tiling array data. Further, by predicting coding and non-coding 
features TileGene is able to provide a more detailed annotation of a genome. 
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