The spatio-temporal dynamics of spontaneous activity in the developing retina

Ben Lansdell^{*†} and J. Nathan Kutz[†]

Department of Applied Mathematics, The University of Washington, Seattle, USA

*lansdell@uw.edu

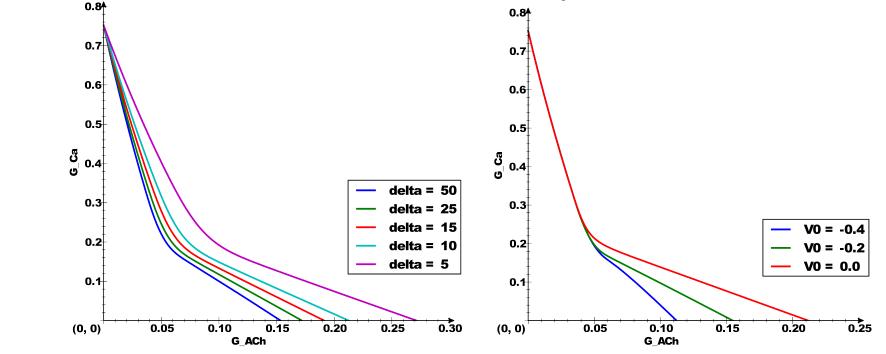
Introduction

Retinal waves an are example of spontaneous correlated activity in the developing central nervous system which drive activity-dependent developmental programs prior to visual stimulus. [1] In order to understand their role in development, it is important to know: how do spatiotemporal wave properties depend on underlying physiology?

Generation of stage II waves [2]

• Spontaneous activity in Starburst Amacrine Cells (SACs) initates waves • Dense, recurrent cholinergic connections between SACs propagates activity laterally **Excitability thresholds**

Parameters where traveling fronts have a positive velocity are those where medium is excitable - supports waves able to travel across retina without decay.



• Slow after-hyperpolarization of SACs creates shifting wave boundaries

Aims

- Develop simple, biophysical model capable of recapitulating dynamics of retinal waves
- Determine parameter regimes in which retinal waves exist
- Characterize spatiotemporal patterns of retinal waves

Model of stage II retinal waves

SACs obey Morris-Lecar dynamics [3] with an additional ACh conductance:

 $C_m V_t = -g_{Ca}(V - V_{Ca}) - g_K(V - V_K) - g_L^M(V - V_L) - g_{ACh}(V - V_{syn})$

where

$$g_{ACh}(A) = g_{ACh}^{M} \frac{\delta A^{2}}{1 + \delta A^{2}},$$

$$A_{t} = D\nabla^{2}A + \beta (1 + e^{-\kappa(V - V_{0})})^{-1} - \frac{A}{\tau_{ACh}},$$

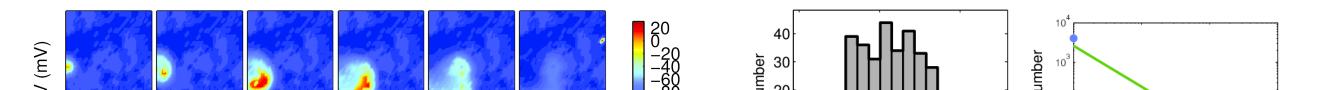
$$\tau_{R}R_{t} = \Lambda(V)(R_{\infty} - R) + \alpha S(1 - R),$$

$$S_{t} = \gamma (1 + e^{-\kappa(V - V_{0})})^{-1} - \frac{S}{\tau_{S}}.$$

- Synaptic conductance g_{ACh} depends on local, extra-cellular concentration of acetylcholine A.
- Dense, lateral connectivity of SACs (not having axonal processes) modelled by the extra-synaptic diffusion of ACh. [2]
- Slow after-hyperpolarization variable Sactivated by depolarization and evolves on timescale τ_S , slower than timescale of $R, \tau_R.$

Simulations

The model reproduces the spatiotemporal patterns of physiological waves.



0.1

0.5

Figure 4: Thresholds at which medium is 'excitable' – points to the right of each curve support forward travelling waves

Critically configured spontaneous activity

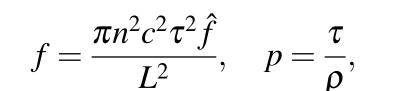
What determines their spatiotemporal properties?

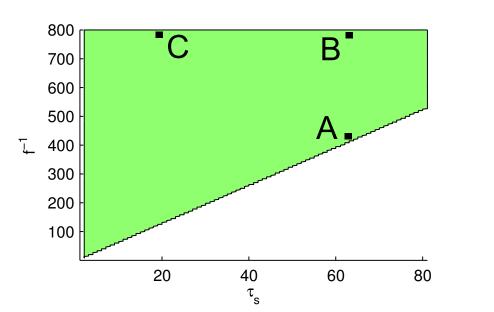
- Hennig et al 2009 [3] observe power-law distributed wave size events from in vitro recordings, similar to avalanches of spontaneous activity observed in cortex [4]
- When does our model exhibit power-law distributed wave sizes?
- Drossel-Schwabl forest fire model (DS-FFM), a canonical model of *self-organized criticality* (SOC): [5] on a square lattice, at each time step
- 1. Each excitable cell spontaneously fires with some probability f
- 2. Each firing cell 'ignites' its excitable nearest neighbours
- 3. Each firing cell becomes refractory (on next time step)
- 4. Each refractory cell becomes excitable with some probability *p*

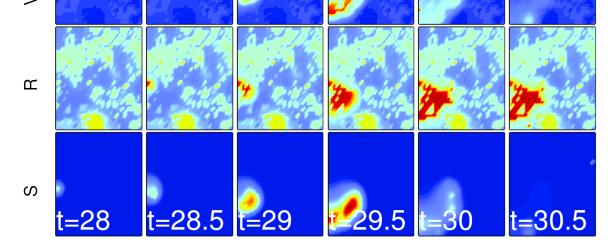
On 2D lattice, SOC observed when: [5]

 $(f/p)^{-1/2} \ll p^{-1} \ll f^{-1}.$ (1)

In our model, on a simulated lattice of n^2 cells, representing L^2 mm² of retina:







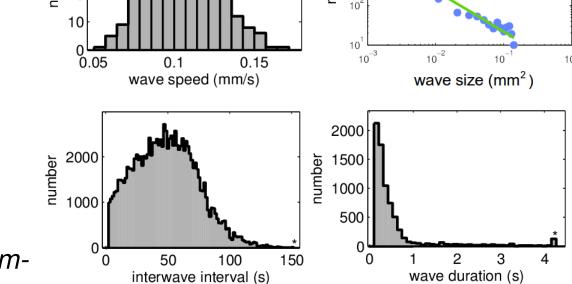


Figure 1: Simulated stage II retinal waves. A 64x64 grid simulates 4mm² area of retina, such that each grid point cor-

wave duration (s

responds approximately to one SAC. Each SAC depolarizes Figure 2: Wave statistics following 5000s of simulated retinal wave activity. spontaneously at an average rate of once every 15 minutes.

The developing retina as an excitable medium

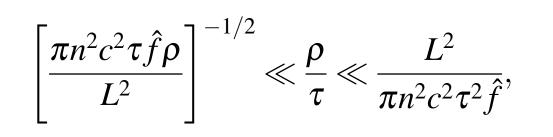
For what parameters can physiological waves exist?

- Wave boundaries determined by refractory state of network in a sufficiently non-refractory medium waves propagate large distances without decay
- Amacrine cell network modelled as a *reaction-diffusion* system

Singular perturbation analysis

- Separate *fast* (voltage, V, and ACh concentration, A) and *slow* systems (refractory variables, *R* and *S*)
- As $\varepsilon \to 0$, both $R_t \to 0$ and $S_t \to 0$, only V and A are dynamic
- Stationary solutions in travelling frame, $\xi = x c(R)t, t = t'$, are travelling fronts of speed c.
 - Heteroclinic orbits connect rest and excited fixed points, computing using HomCont in AUTO.

Figure 5: Shaded region indicates where (1) is satisfied. for wave speed at rest refractory state c, per cell $\mathbf{A} \theta = 1.5$, log-linear least squares fit estimates $\alpha = -1.45$ spontaneous firing rate \hat{f} , spike duration τ , and $(R^2 = 0.95)$; $\hat{B} \theta = 3$, log-linear least squares fit estimates scaling exponent $\alpha = -1.10 \ (R^2 = 0.95)$; **C** $\theta = 10$, logeffective refractory period ρ . linear least squares fit estimates $\alpha = -1.14$ ($R^2 = 0.96$). From (1), observe SOC when:



where c, τ and ρ are all relateable to parameters of underlying model through either simulation or numerical continuation.

In DS-FFM expect power-law distributed wave sizes with scaling exponent $\alpha = -1.15$, as $\theta =$ $p/f \rightarrow \infty$.

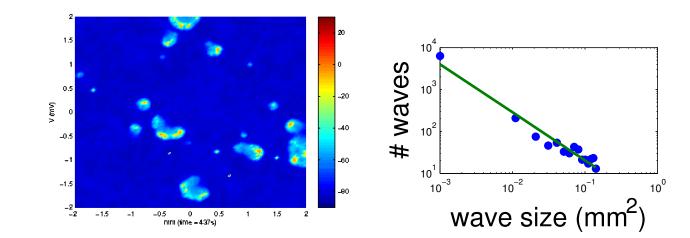


Figure 6: *B* For $\theta \rightarrow \infty$, network approaches critical state characterized by power-law distributed events.

Summary

- A combination of singular perturbation analysis, simulation and numerical continuation can be used to understand complex spatiotemporal patterns of stage II retinal waves
- Spontaneous activity in developing retina can be interpretted in terms of a classical selforganized critical forest fire model
- Future work: further statistical tests of power-law size distributions, criteria for other behaviour regimes (spiral waves, bimodal wave-size distributions)

The authors would like to thank Kevin Ford for discussions and feedback on this work.

References

 $V_t = f(V, R, S, A),$ $A_t = k(V, R, S, A) + \nabla^2 A,$ $R_t = \varepsilon g(V, R, S, A),$ $S_t = \varepsilon^2 h(V, R, S, A).$

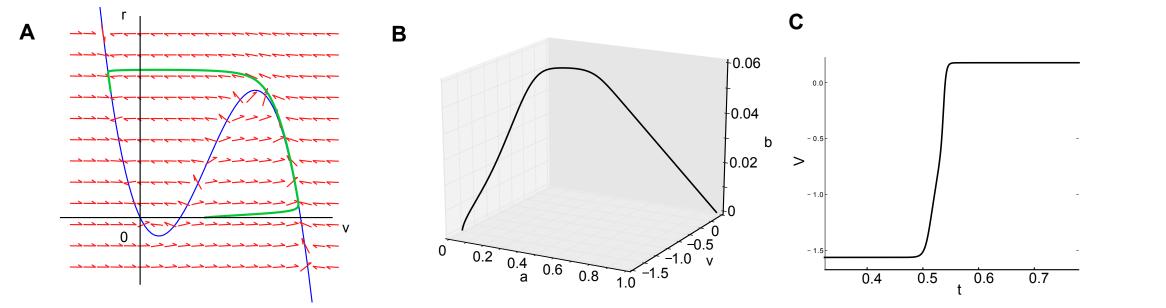


Figure 3: Wave front dynamics. a) Fast-slow dynamics in Fitzhugh-Nagumo example b) trajectory of wave-front dynamics c) wave-front

- [1] A. G. Blankenship and M. B. Feller, "Mechanisms underlying spontaneous patterned activity in developing neural circuits.," Nature reviews. Neuroscience, vol. 11, pp. 18–29, Jan. 2010.
- [2] K. J. Ford, A. L. Félix, and M. B. Feller, "Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves.," The Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 32, pp. 850–63, Jan. 2012.
- [3] M. H. Hennig, C. Adams, D. Willshaw, and E. Sernagor, "Early-stage waves in the retinal network emerge close to a critical state transition between local and global functional connectivity.," The Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 29, pp. 1077–86, Jan. 2009.
- [4] J. M. Beggs and D. Plenz, "Neuronal avalanches in neocortical circuits.," The Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 23, pp. 11167–11177, Dec. 2003.
- [5] B. Drossel and F. Schwabl, "Self-organized critical forest fire model," Physical review letters, vol. 69, no. 11, pp. 1629–1632, 1992.